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Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential
to play a key role in conducting greenhouse gas inventories and implementing climate mitigation poli-
cies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass
and carbon that represents nationally diverse tidal marshes within the conterminous United States
(CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh
biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions:
Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and
Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from
multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture
Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vege-
tation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2,
10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types
defined by height, leaf angle and growth form. Model results were improved by scaling field-measured
biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon con-
tent of 44.1% (n = 1384, 95% C.I. = 43.99%–44.37%), we generated regional 30 m aboveground carbon den-
sity maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal
Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in
regional carbon densities and stocks that considered standard error in map area, mean biomass and mean
%C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions,
while San Francisco Bay brackish/saline marshes had the highest C density of all estuarine emergent
marshes (2.03 ± 0.004 Mg/ha). Estimated C stocks for predefined jurisdictional areas ranged from 1023
± 39 Mg in the Nisqually National Wildlife Refuge in Washington to 507,761 ± 14,822 Mg in the
Terrebonne and St. Mary Parishes in Louisiana. This modeling and data synthesis effort will allow for
aboveground C stocks in tidal marshes to be included in the coastal wetland section of the U.S.
National Greenhouse Gas Inventory. With the increased availability of free post-processed satellite data,
we provide a tractable means of modeling tidal marsh aboveground biomass and carbon at the global
extent as well.
Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc.
(ISPRS). This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

The soils and vegetation of coastal wetlands, including tidal
marshes, mangroves and seagrasses, represent significant long-
term standing carbon (C) pools that cumulatively sequester atmo-
spheric carbon at annual rates comparable to terrestrial forest
types despite their small global coverage (McLeod et al., 2011).
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These C stocks and fluxes in intertidal environments are collec-
tively referred to as ‘‘coastal wetland blue carbon” (Pendleton
et al., 2012). In particular tidal marsh C stocks sequester carbon
at rates of 1–2 Mg C per hectare per year on average (IPCC,
2014), though are being converted to open water or other land
cover types at rates of 1–2% globally (Bridgham et al., 2006;
Duarte et al., 2005). Conversion is primarily due to increasing
coastal populations, agriculture and the effects of climate change,
including sea-level rise and extreme weather events (Kirwan and
Megonigal, 2013; Wylie et al., 2016). Collectively, these contribute
to greenhouse gas (GHG) emissions of 21–760 million Mg CO2eq
per year (Howard et al., 2017).

Given their large C stocks and high carbon sequestration rates, as
well as thepotential for increasedGHGemissionsdue tohumancon-
version and degradation, coastal wetlands have in recent years
received significant attention for their potential role in climate
change mitigation (Duarte et al., 2013). Entities interested in utiliz-
ing ‘‘coastal wetland blue carbon” as a management asset include
voluntary C markets such as the Verified Carbon Standard (VCS).
ApprovedVCScoastalwetland restorationandconservationprojects
can now receive carbon credits for reduction of GHG emissions
(American Carbon Registry, 2017; Verified Carbon Standard, 2015).

In 2017 theU.S. EPA for thefirst time included coastalwetlands in
the Agriculture Forestry and Other Land Use (AFOLU) sector of the
national GHG inventory (USEPA, 2017), based on guidelines in the
Intergovernmental Panel on Climate Change (IPCC) 2013 Wetlands
Supplement (IPCC, 2014). Because of human use and level of regula-
tory oversight, all coastal wetlands in the conterminous U.S.
(CONUS)were considered asmanaged lands similar toAFOLUguide-
lines for U.S. forest and cropland accounting (USEPA, 2017). As a
result monitoring annual change in GHG emissions and removals
within all 2.7 million Ha of CONUS tidal wetlands is now a compo-
nent of annual U.S. GHG inventories. While five C pools must be
reported in the inventory (soils, above- and belowground biomass,
dead wood and litter), the first coastal wetlands inventory only
included C stock changes for soil carbon, the largest C pool for tidal
marshes, due to insufficient data on biomass, dead wood and litter.
Given emergent marsh represents 80% of all CONUS tidal wetlands
(U.S. Fish andWildlife Service, 2014), its biomass can play an impor-
tant role in C accounting for the coastal lands sector.

To include tidal marsh biomass in the coastal wetlands GHG
Inventory, particularly at a Tier 2 level, higher temporal and spatial
resolution and more disaggregated data are needed (IPCC, 2003).
Information on biomass C stocks will also help to verify emission
reductions for projects included in the voluntary C markets
(Howard et al., 2017). Remote sensing based maps of tidal marshes,
both of their extents and C stocks, can play a key role in meeting
these objectives (Gonzalez et al., 2010). Remote sensing data pro-
vide a repeatable, standardized approach to assess spatial and tem-
poral changes in biomass over large areas, fulfilling an essential
component of GHG Inventories and required monitoring of carbon
mitigation activities (Pettorelli et al., 2014).

In the United States the primary spatial dataset being used for
tidal marsh GHG inventories is the National Oceanic and Atmo-
spheric Administration (NOAA) Coastal Change Analysis Program
(C-CAP) dataset (NOAA Office for Coastal Management, 2015),
which was produced for CONUS in four to five year increments
(1996, 2001, 2006, and 2010). C-CAP provides wall-to-wall
Landsat-based 30-meter resolution maps of coastal lands with
wetland classifications for key coastal wetland classes that include
forested, scrub-shrub and emergent marsh, subdivided into palus-
trine (freshwater wetland with salinity less than 0.5%) and estuar-
ine (brackish and saline wetland with salinity equal to or greater
than 0.5%). Extraction of additional information on vegetation
condition from the Landsat data used to derive the C-CAP maps
has the potential to further characterize wetland carbon stocks.
Technical barriers to national scale remote sensing have
become greatly reduced in recent years with the availability of free,
post-processed satellite and aerial imagery with national to global
coverage. The entire catalog of Landsat satellite images is now
available georeferenced and calibrated as a surface reflectance pro-
duct (Vermote et al., 2016) that can be used for biomass estimation
in otherwise data scarce regions (Dube and Mutanga, 2015).
Sentinel-1A and Sentinel-1B provide global, free C-band quad-pol
synthetic aperture radar data approximately every 6 days. The U.
S. National Agriculture Imagery Program (NAIP) offers 4-band aer-
ial image data of the U.S. at 1 m resolution approximately every
two to three years since 2003 (USDA Farm Service Agency, 2017).
These datasets, along with other geophysical, climate and demo-
graphic data, are now accessible within Google Earth Engine’s
(GEE) platform. The GEE platform consists of a petabyte catalog
of satellite imagery and geospatial datasets and a massively paral-
lel, distributed runtime engine (Google Earth Engine Team, 2017).
This combination of parallel processing and rich data archive is
enabling the production of global products, such as global forest
cover change maps and global surface water inundation maps
(Hansen et al., 2013; Pekel et al., 2016).

Optical remote sensing of tidal marsh biomass has been per-
formed in multiple regions, including the U.S. Southeast (Schalles
et al., 2013), the Gulf of Mexico (Ghosh et al., 2016; Mishra et al.,
2012), Argentina (Gonzalez Trilla et al., 2013), the U.S. Pacific Coast
(Byrd et al., 2014, 2016) and South Africa (Mutanga et al., 2012)
where remote sensing model error is typically below 20%. The
application of radar data for tidal marsh biomass mapping has
not been well tested, though it can indicate marsh dieback from
hurricanes and recovery (Ramsey et al., 2014). Despite these mul-
tiple efforts, mapping is conducted using empirical models and the
general assumption is that due to differences in marsh ecosystems
including plant community composition, water depth and soil
types, models are calibrated to specific locations and years, thus
posing limitations for scaling (Lobell et al., 2015).

Tidal marsh vegetation is primarily dominated by graminoids,
or grass or grass-like plants, including grasses (Poaceae), sedges
(Cyperaceae), rushes (Juncaceae), and arrow-grasses (Juncagi-
naceae). Common genera from these families appear throughout
U.S. tidal marshes, though these may vary in dominance, distribu-
tion and spatial pattern. In the U.S. Northeast and mid-Atlantic
marshes, the perennial, deciduous shrub Iva frutescens (high-tide
bush or marsh elder) can also occur. Tidal freshwater marshes
are more species-rich than saline marshes though commonly
include Schoenoplectus spp. (bulrushes), Typha spp. (cattail), Poly-
gonum spp. (smartweed), and non-natives like Phragmites australis
australis (common reed) (Vasquez et al., 2005).

One reason why empirical remote sensing models of biophysi-
cal features like biomass are not transferrable to other regions is
that the differences in canopy architecture or leaf traits from one
plant community to the other have different optical properties,
and so generate different relationships with vegetation indices
for the same level of biomass (Glenn et al., 2008; Nagler et al.,
2004). For example the vertical stem morphology of many tidal
marsh rushes, sedges or grasses increases light scattering and
absorption in spaces between vegetation, leading to lower overall
canopy reflectance (Mutanga and Skidmore, 2004; Ollinger,
2011). In contrast, the horizontal leaf angle of grass species like
Distichlis spicata support strong relationships between biomass
and vegetation indices like NDVI (Langley and Megonigal, 2012).

Given differences in leaf morphology and plant growth form
among emergent marsh species, our primary objective was to gen-
erate a single remote sensing model of tidal marsh aboveground
biomass and carbon that represents nationally diverse saline,
brackish and freshwater marshes. In order to successfully fulfill
this, we developed the first national-scale dataset of aboveground
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tidal marsh biomass, species composition and aboveground plant C
content from six U.S. estuaries representing a range of climate and
salinity gradients. Using this dataset we test the performance of a
repeatable remote sensing methodology for GHG accounting of
tidal marsh aboveground C stocks that is consistent, transferable,
free or low-cost and applicable to a range of estuarine
characteristics.

Through the implementation of these objectives we address
how the differences in plant community composition and vegeta-
tion structure across estuaries influence model development, and
how additional or improved remote sensing data sets are able to
improve model performance. In particular, we test the addition
of Sentinel-1 C-band synthetic aperture radar backscatter with
standard Landsat vegetation indices. We also explore how high res-
olution NAIP imagery can help to improve vegetation cover and
biomass estimates. Given a final model, we evaluate uncertainties
in mean aboveground C densities and total aboveground C across
regions and wetland types mapped in C-CAP, and we investigate
the capacity to discern regional and sub-regional differences in
these estimates.
2. Methods

2.1. Site descriptions

We compiled new and existing field samples of aboveground
biomass and related ancillary data from six CONUS estuaries that
represent a range in climate and salinity regimes and wetland con-
dition (Fig. 1, Table 1). These study regions include: the Cape Cod
peninsula, Massachusetts; the Smithsonian Environmental
Research Center Global Change Research Wetland (GCReW) on
Chesapeake Bay in Anne Arundel County, Maryland; the Florida
Coastal Everglades Long Term Ecological Research Site
in Everglades National Park, Florida; Terrebonne and Saint Mary
Parishes, Louisiana, in the Mississippi Delta; the Billy Frank Jr. Nis-
qually National Wildlife Refuge (NWR) in Puget Sound, Washing-
Fig. 1. Study Regions. (A) Puget Sound, Washington, Laurel Ballanti; (B) Cape Cod, Ma
Everglades, Florida, paulsmithrj, CC BY-SA 3.0; (E) Mississippi River Delta, Louisiana, Gr
ton; and San Francisco Bay, California, which was split into two
sub-regions, the saline/brackish marshes and the freshwater
marshes. Images of common plant species in these regions are
found in Fig. 2.
2.2. Sampling

Processing steps for the remote sensing model of tidal marsh
aboveground C stocks are outlined in Fig. 3. For the first step, we
compiled biomass field samples including sets of existing and
newly collected data ranging from 2005 to 2015, using a sampling
protocol to model biomass at the 30 m Landsat scale. In total the
final published Biomass Field Plot dataset (Byrd et al., 2017)
includes 2400 sample plots, with a majority from San Francisco
Bay (n = 1348) and the Everglades (n = 700). Plot data include bio-
mass measurements, species composition data and related ancil-
lary data including water depth, thatch height and density, and
percent cover live/dead vegetation, soils, open water and litter.
Region specific field sampling methods are described below.

San Francisco Bay: We used existing biomass samples as
described in Byrd et al. (2014) (freshwater impounded marsh,
2011–2012), Byrd et al. (2016) (brackish tidal marsh, 2014), and
(Parker et al., 2012, 2011; Schile et al., 2011) (saline marsh, 2005,
2008).

Everglades: Cladium jamaicense aboveground live biomass has
been sampled every two months at permanent plots, from 1998
to 2015 (Troxler and Childers, 2017). Allometric measurements
were made in triplicate 1 m2 plots at each of the sites according
to Daoust and Childers (1998).

Louisiana: Biomass data and ancillary data on species composi-
tion and water depth were collected in May 2015 and at the end of
August 2015. All vegetation was clipped to the ground level within
a 45 cm square area, dried and weighed by species. Each site con-
sisted of two plots positioned 5 m apart. The sites were located
along transects perpendicular to the main channels.
ssachusetts, Lia McLaughlin; (C) Chesapeake Bay, Maryland, Grace Schwartz; (D)
eg Snedden; (F) San Francisco Bay, California, Jessica Schneider.



Table 1
Summary of environmental characteristics and climate for each site where aboveground biomass was sampled.

Region Site Name Latitude Longitude Condition Salinity Air Temp
Avg. Max (�C)

Air Temp
Avg. Min (�C)

Annual Average
Precip. (mm/y)

Month of
Max Precip.

Cape Cod Waquoit Bay 41�33.4060N 70�29.7760W NAT S,B 14.8 5.7 1210 October
Scusset 41�47.2140N 70�31.3580W REST B
Herring 41�56.8800N 70�3.1660W DEG F

Chesapeake Bay Global Change
Research Wetland

38�53.2920N 76�33.2520W NAT B 17.9 7.9 1139 September

Everglades Everglades National
Park

25�22.3220N 80�52.8830W NAT S,B,F 30 18 1432 June

Louisiana/
Mississippi Delta

Terrebonne Parish 29�20.2440N 90�50.2470W REST,
NAT

S,B,F 26 15.6 1580 July

St. Mary Parish 29�38.0720N 91�28.3650W REST,
NAT

S,B,F

Puget Sound Nisqually National
Wildlife Refuge

47�5.5390N 122�42.3480W REST,
NAT

S,B 15.8 4.8 1269 November

San Francisco Bay -
Brackish, Saline

Coon Island 38�11.6380N 122�19.4350W REST B 19.2 10.2 634 January
Pond 2A 38�9.0990N 122�19.3050W REST B
Carl’s Marsh 38�7.3080N 122�30.4010W REST B
China Camp 38�0.1570N 122�29.1670W NAT S
Rush Ranch 38�12.2170N 122�1.2920W NAT B
Bull Island 38�13.3280N 122�18.3980W REST B
Sherman Lake 38�2.4140N 121�47.7880W DEG B
Browns Island 38�2.3370N 121�51.8420W NAT B

San Francisco Bay -
Freshwater

Twitchell Island 38�6.5780N 121�38.9140W REST* F 22.9 9.8 339 January
Mayberry Wetland 38�3.5620N 121�43.9970W REST* F
Sand Mound Slough 38�0.6940N 121�36.9930W NAT F

Salinity: S = saline (30–50 parts per thousand; ppt), B = brackish (0.5–30 ppt), F = freshwater (0–0.5 ppt).
Condition: NAT = natural, REST = restored, DEG = degraded, *Impounded wetlands (obstructed water outflows).
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Cape Cod, Puget Sound, and Chesapeake: Biomass samples and
ancillary data were collected in these three regions during peak
growing season of August–September 2015 following methods in
Byrd et al. (2016). For each region, at least 30 Landsat pixel foot-
prints were selected for sampling that represented both homoge-
nous pixels, in terms of species diversity and vegetation cover,
and a range of Landsat NDVI values from low to high (Ghosh et al.,
2016), as determined by high resolution imagery, previous summer
season Landsat NDVI, and existing vegetation maps. Within each
pixel footprint, three regularly spaced plotswere selected for collec-
tion of biomass field samples and ancillary data, and were recorded
with a sub-meter global positioning system (GPS). At each plot
within 1 m * 1 m quadrats, we visually estimated percent cover of
the top three dominant species as the mid-point of the Braun Blan-
quet cover class (Barbour et al., 1999). We sampled live above-
ground biomass within a smaller quadrat nested in the 1 m * 1 m
quadrats (0.5 m * 0.5 m for Cape Cod and Chesapeake, 0.5 m *
0.25 m for Puget Sound, 0.25 m * 0.25 m * 5 replicates for Chesa-
peake). We clipped vegetation to the ground level, separated green
vegetation from dead, and then dried green vegetation at 55 �C
beforeweighing. All biomassmeasurementswere scaled to a square
meter. At the Chesapeake site, we used allometric equations modi-
fied from Lu et al. (2016) to estimate biomass for P. australis australis
and I. frutescens plants, which were sampled in 1 m2 quadrats.

For each Landsat pixel footprint sampled, we identified the
dominant plant species using a two-variable importance value
measure, including average percent cover and frequency of occur-
rence among all field plots within the pixel (Barbour et al., 1999).
All dominant species identified across all regions were classified
by plant functional type according to height class (low: <1 m vs.
high: >=1 m), leaf inclination angle (erect, prostrate), and growth
form (graminoid, forb, sub-shrub, shrub) according to the U.S.
Department of Agriculture PLANTS database (USDA NRCS, 2017)
and expert opinion to explore variation in plant interaction with
vegetation indices and radar backscatter. Once classified, we iden-
tified only three shrub pixels, dominated by Iva frutescens in the
Chesapeake region.
2.3. Database development

We developed a 30 m scale Biomass/Remote Sensing dataset
that joins field-measured biomass values, dominant species and
other ancillary information with Landsat band surface reflectance
and vegetation indices, NAIP-derived fractional cover of green veg-
etation, and Sentinel-1 radar backscatter coefficients. The final
public dataset includes 1226 Landsat pixels (Byrd et al., 2017).

Landsat Data: Using Google Earth Engine (GEE), pixels from
Landsat (Landsat 5 TM, Landsat 7 ETM + and Landsat 8 OLI) surface
reflectance products were matched with biomass data collected
within 16 days of image acquisition (Table 2). Biomass values from
plots located in the same Landsat pixel footprint were averaged,
and average values were attributed to reflectance from the corre-
sponding pixel. From surface reflectance data, we calculated all
two-band vegetation indices (Thenkabail et al., 2004), the wide
dynamic range vegetation index (WDRVI) (Gitelson, 2004), and
the soil-adjusted vegetation index (SAVI) (Huete, 1988) (Table 3)
due to their success in other remote sensing studies of marsh bio-
mass (Byrd et al., 2016; Langley and Megonigal, 2012; Mishra et al.,
2012). Major GEE processing steps are provided in Supplementary
Data S1 and S2.

Blue Carbon Extent Map: The spatial extents of our above-
ground carbon density maps were based on a modified 2010
C-CAP land cover dataset with estuarine or palustrine emergent
marsh only. Likely non-tidal palustrine wetlands were removed
from the dataset based on National Wetlands Inventory (NWI)
modifiers for tidal wetland. This map was further edited to
include major tidal marsh omissions such as the newly restored
wetland at Nisqually NWR and tidal marsh commissions such as
impounded, non-tidal wetlands in Suisun Marsh, in San Fran-
cisco Bay.

NAIP Image Classification: For each region, we generated a 1 m
resolution map of tidal marsh green vegetation, non-vegetation,
and open water, which was then used to calculate 30 m fractional
cover of green vegetation per Landsat pixel in the Blue Carbon
Extent Map. The most recent NAIP images for each region (Table 2)
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Fig. 3. Flowchart of processing steps.

Fig. 2. Common Tidal Marsh Species, their plant functional type and region where most commonly found. Juncus spp., Dana York; Colocasia esculenta, Moorea, Biocode;
Salicornia pacifica, Dana York; Eleocharis spp., Jennifer Anderson, USDA-NRCS Plants Database; Cladium jamaicense, Smithsonian Institute Dept. of Botany; Sagittaria lancifolia,
George Folkerts, USDA-NRCS Plants Database; Iva frutescens, Robert H. Mohlenbrock, USDA-NRCS Plants Database; Schoenoplectus acutus, Robert Carr; Distichlis spicata, Laurel
Ballanti; Spartina alterniflora, Zoya Akulova; Phragmites australis australis, Luigi Riganese. Region abbreviations: CC: Cape Cod, CH: Chesapeake, EV: Everglades, LA: Louisiana,
SFB: San Francisco Bay, PS: Puget Sound.
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Table 2
Dates of field data collection and image acquisition. Field data were matched with Landsat data acquired within 16 days and with Sentinel-1A data acquired within 30 days of
field data collection.

Region Field data Landsat ETM+ Landsat OLI Sentinel-1A NAIP

Cape Cod 8/10/2015–9/16/2015 8/5/2015, 9/6/2015 8/16/2015 07/13/2014, 7/18/2014, 7/29/2014
Chesapeake 9/1/2015–9/28/2015 8/17/2015, 9/18/2015 8/25/2015 8/1/2014, 8/14/2015, 8/15/2015, 9/07/2013, 9/25/

2013
Everglades 7/28/1999–8/27/2015a 1999–2015a 2013–2015a 9/21/2015 10/11/2013, 10/12/2013, 10/18/2013, 10/19/2013, 10/

27/2013–10/29/2013, 11/3/2013, 11/4/2013, 11/28/
2013, 12/6/2013, 12/18/2013

Louisiana 5/6/2015–10/2/2015 5/6/2015, 8/26/
2015

5/5/2015, 8/23/2015, 8/
25/2015, 10/5/2015, 10/
12/2015

8/18/2015 3/30/2015, 8/26/2015–8/27/2015

Puget Sound 8/4/2015–8/27/2015 8/1/2015, 8/17/2015 8/11/2015 7/30/2015, 8/25/2015
San Francisco

Bay
2005, 2007, 2008,
2011–2012, 2014a

2005–2012a 5/21/2014, 6/6/2014, 6/
22/2014, 7/8/2014, 7/24/
2014, 8/9/2014

6/6/2014, 6/8/2014, 6/21/2014, 6/28/2014

a See Byrd et al. (2017) for specific field and image dates.

Table 3
Remote sensing-based variables tested in random forest models.

Landsat ETM+, OLI (30 m)
Two-band vegetation indices: TBVIij = (Rj � Ri)y/(Rj + Ri)
Wide dynamic range vegetation index:
WDRVI2 = (0.2 * NIR � R)/(0.2 * NIR + R)
WDRVI5 = (0.5*NIR � R)/(0.5 * NIR + R)
Soil adjusted vegetation index: SAVI = (NIR � R) * 1.5)/(NIR + R + 0.5)

Sentinel-1 C-band SAR (10 m)
VH, VV mean backscatter coefficient in green segment of Landsat pixel
VH, VV backscatter standard deviation in green segment of Landsat pixel
VH, VV backscatter coefficient of variation in green segment of Landsat
pixel

National Agriculture Imagery Program images (1m)
Fraction green vegetation in Landsat pixel

�NIR = near infrared reflectance.
§R = red reflectance.
y Ri and Rj are the reflectance values in bands i and j.
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were downloaded for free from earthexplorer.usgs.gov and
mosaicked in ERDAS Imagine MosaicPro using the color balance
correction. The NAIP classification was performed in eCognition,
which applies an object oriented approach, beginning with the
multi-resolution segmentation tool to isolate spectrally similar
pixels as objects. Object oriented-analysis has shown higher accu-
racy and removal of speckle noise in high resolution imagery such
as NAIP, compared to pixel-based analysis (Li and Shao, 2014; Yuan
and Bauer, 2006). Parameters for shape and compactness were set
to the default values of 0.1 and 0.5, and the scale parameter, which
determines segmentation size, was set by region based on trial and
error. Once the segmentation was complete, the objects were clas-
sified using spectral thresholds based on the 4 NAIP bands, NDVI,
the Normalized Difference Water Index (NDWI) (McFeeters,
1996) and mean brightness. We calculated the percent of each
class within Landsat pixel extents, and generated 30 m resolution
maps of fraction green vegetation for each region. We conducted
an accuracy assessment of the NAIP classification by selecting
150 random points within each region. Each sample point was
assigned to a class based on visual interpretation of the NAIP ima-
gery (Supplementary Data S3).

Sentinel-1 Data: Sentinel-1 data collected from August 11 to
September 21, 2015 (Table 2), were acquired from the European
Space Agency (ESA) via the Copernicus Open Access Hub (https://
scihub.copernicus.eu/). Cross-polarized data were not available at
all locations, in which case we used co-polarized imagery. The
raw data were pre-processed via the ESA Science Toolbox Explo-
ration Platform (STEP). The data were calibrated for radiometric
and geometric effects and filtered to remove speckle noise using
the Lee (1981) algorithm. We calculated several variables for both
the vertical transmit and vertical receive (VV) and vertical transmit
and horizontal receive (VH) polarizations, including mean
backscatter coefficient, backscatter standard deviation, backscatter
coefficient of variation (i.e. standard deviation over mean ampli-
tude) for the whole Landsat pixel and for the green segment of
the pixel calculated from the 1 m map of green vegetation cover.
Backscatter variables were only matched with biomass field data
collected within one month of image acquisition (Byrd et al., 2017).
2.4. Biomass modeling – random forest

For modeling purposes, we retained samples in the Biomass/
Remote Sensing dataset if biomass could be matched with Landsat
8 or Landsat 7 surface reflectance data; given that Landsat 8 OLI
NDVI is greater than Landsat 7 ETM + NDVI due to different spec-
tral response functions between the sensors, we applied a surface
reflectance sensor transformation function to all Landsat 7 band
surface reflectance values to transform them to Landsat 8 surface
reflectance (Roy et al., 2016). Transformation functions do not exist
between Landsat 8 and Landsat 5; therefore samples matched with
Landsat 5 were not used. Landsat 5 samples were only located in
the Everglades or San Francisco Bay. Given the disproportionately
greater sample number in these regions (n > 500 each) compared
to other regions (n < 50 each), we selected a stratified random sam-
ple of pixels in the Everglades and both San Francisco Bay sub-
regions (salt/brackish and freshwater) while maintaining biomass
distributions. The final national scale dataset for the modeling
exercise had a sample number of 409 30 m resolution pixels.

We built empirical biomass models from the full national scale
dataset using a random forest machine learning algorithm in the R
caret package, using the ‘‘ranger” model. Random forest (Breiman,
2001) is a non-parametric classification and regression tree
approach that uses ensembles (forests) of classification or regres-
sion trees, with each tree selecting and permuting randomized
subsets of predictor variables. The iteration and randomization
procedure accommodates non-linear responses, categorical or con-
tinuous variables, and missing values, it can manage complex
interactions among variables, and has been useful for building
remote sensing biomass and productivity models (Gonzalez-
Roglich and Swenson, 2016; Greaves et al., 2016; Tramontana
et al., 2015). The ranger model, which generates 500 trees per
model run, allows for tuning of the ‘‘mtry” parameter, which deter-
mines the number of variables randomly tested for a split at each
tree node.

From all generated Sentinel-1 and Landsat variables, we
removed those collinear variables from the model where Pearson’s
correlation coefficient > 0.80. We retained variables in the model

http://earthexplorer.usgs.gov
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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with high variable importance measures that contributed to an
improved model fit, as indicated by a reduction in root mean
square error (RMSE). The permutation variable importance mea-
sure – also referred to as the mean decrease in accuracy – reflects
the average change in mean square error normalized by the stan-
dard error after permuting a variable (Kuhn, 2008), and has been
used to select the most relevant remote sensing model variables
(Belgiu and Drăgut�, 2016).

Model training was based on a 10-fold cross validation resam-
pling method repeated 5 times, which generates test predictions
for all samples, allowing exploratory data analysis of cross-
validated predictions and independent variables. With a 10-fold
cross validation repeated 5 times, the model is fit 50 times, and
the operation generates 50 RMSE values, which can be used to gen-
erate a mean RMSE and its confidence intervals. Models were eval-
uated by RMSE, RMSE confidence intervals from final predictions
(Byrd et al., 2014), percent normalized RMSE [RMSE/(max
observed – min observed)] and the mean RMSE +/� confidence
intervals from the 50 cross-validation model runs.

Models were built with non-correlated Landsat vegetation
indices and Sentinel-1 radar backscatter variables, and a factor
variable for region, which was included to explore the role of site
effects in predicting biomass values nationally. The dependent
variable was average field-measured biomass per Landsat pixel,
scaled by fraction vegetation cover in the pixel (biomass * FVC)
(Byrd et al., 2016). Model sets are listed in Table 6. With
Sentinel-1 data only available for four of the seven regions, we
built a national-scale Landsat-only random forest model that
included samples from all regions. Four national-scale models
were tested and compared: (1) the full Landsat model, (2) the full
Landsat model, without the three I. frutescens shrub plots, (3) the
full Landsat model, without the three I. frutescens shrub plots, using
average unscaled field measured biomass as the dependent vari-
able, and (4) the full Landsat model, without the three I. frutescens
shrub plots, and without the ‘‘site” factor variable. Models with
both Landsat and Sentinel-1 variables were generated with data
subsets representing the regions where Sentinel-1 data were
available.

Using cross validated predictions from the final model, we eval-
uated model bias by regressing observed vs. predicted values, and
compared slope and intercept parameters against the 1:1 line
(Piñeiro et al., 2008). We also plotted predicted biomass vs. inde-
pendent variables with the highest importance measures.
2.5. Aboveground carbon density maps

We selected the best performing random forest model as deter-
mined by RMSE, percent normalized RMSE, and dynamic range of
predicted values. Based on this final model and Landsat images col-
lected during August 2015, when peak biomass typically occurs,
we generated aboveground biomass predictions for the Blue Car-
bon Extent Maps.

Percent C in aboveground plant tissue (dry weight biomass) was
determined by compiling existing data from three regions of the U.
Table 4
Summary statistics for measured aboveground live biomass averaged by Landsat pixel for

Estuary N Mean Std. Err.

Cape Cod 33 706 67
Chesapeake 23 1141 157
Everglades 87 147 16
Louisiana 29 637 67
Puget Sound 38 447 36
SFBay-B/S 99 410 25
SFBay-FW 100 664 75
Total 409 501 26
S.: the San Francisco Bay-Delta, Puget Sound, and the GCReW site
in Chesapeake Bay [Byrd, 2012, unpublished data; (Janousek
et al., 2017), P. Megonigal, unpublished data, personal communica-
tion 5/10/2017]. Mean %C was used to convert biomass predictions
to aboveground C densities to generate regional maps of tidal
marsh aboveground C.

2.6. Uncertainty in regional aboveground carbon stocks

Applying the aboveground C density maps, mean aboveground
C densities (Mg/ha) and total aboveground C stocks (Mg) were
reported for each C-CAP wetland type (estuarine emergent and
palustrine emergent) for each region, and their uncertainties.

To propagate uncertainties (standard errors) in mean C density
and total C, we applied the multivariate delta method, which pro-
vides approximate variance estimates when sample sizes are large
(Ver Hoef, 2012), and has been used in past carbon stock assess-
ments (Goidts et al., 2009; Magnussen et al., 2014). Given x = mean
biomass (Mg/ha), y = proportion of plant aboveground C relative to
biomass, and z = map area (ha), when the metrics are independent,
then the variance approximations are:

Var xyð Þ � y2Var xð Þ þ x2Var yð Þ ð1Þ

Var xyzð Þ � yzð Þ2Var xð Þ þ xzð Þ2Var yð Þ þ xyð Þ2Var zð Þ ð2Þ
where Var(x), Var(y), and Var(z) might be approximated as the
square of the standard errors for the measurements x, y, and z,
respectively. After calculating these variance estimates, then stan-
dard errors for xy and xyz are calculated by taking

p
Var(xy) andp

Var(xyz).
Standard error for mean biomass per region and wetland type

was calculated through error propagation of the standard error of
predicted biomass and model random error. To calculate standard
error of estimated C-CAP map area, we applied methods in
Olofsson et al. (2014) for calculating unbiased area estimates and
confidence intervals for land cover classes based on the national
2010 C-CAP accuracy assessment published in McCombs et al.
(2016). The C-CAP confusion matrix was used to calculate propor-
tional areas for all 22 C-CAP classes. Then for the mapped estuarine
emergent and palustrine emergent areas in each study region we
calculated a ratio of estimated area to mapped area and their stan-
dard errors.

3. Results

3.1. Field sample results

Live aboveground green biomass field samples, averaged to the
30 m Landsat pixel area, averaged 501 g/m2 nationally (n = 409, C.
I. = 450–552 g/m2) (Table 4). While the maximum measured value
at the 30 m scale was 3124 g/m2, located in the San Francisco Bay-
Delta freshwater marshes, 95% of the samples at the 30 m scale
were 1560 g/m2 or less. Values above 2000 g/m2 were found in
the Chesapeake site, associated with Iva frutescens, and the San
each region, in g/m2.

[95% Conf. Interval] min max

568 843 206 1767
817 1466 120 2807
114 179 0 602
499 774 207 1833
375 519 51 919
361 459 78 1559
515 813 14 3124
450 552 0 3124
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Francisco Bay freshwater sites, associated with Typha spp. and
Schoenoplectus acutus.

3.2. Tidal marsh plant functional types

Tall, erect, graminoids were themost common plant type, repre-
senting 277 samples out of 409 used for model development. This
plant functional typewasmost common in five of the seven regions,
Table 5
Dominant species within each Landsat pixel sample according to importance value, classi

Dominant species, by plant type Cape Cod Chesapeake Ev

Short, erect, graminoid
Agrostis stolonifera
Carex lyngbyei
Distichlis spicata 5 1
Eleocharis acicularis
Eleocharis montana
Eleocharis sp.
Juncus gerardii 1
Scirpus cernuus
Spartina patens 8
Triglochin maritima
Sub-Total 6 9 0

Tall, erect, graminoid
Bolboschoenus maritimus
Cladium jamaicense 87
Phalaris arundinacea
Phragmites australis australis 7 9
Schoenoplectus acutus
Schoenoplectus americanus 2
Schoenoplectus californicus
Spartina alterniflora 15
Spartina foliosa
Typha angustifolia
Typha domingensis
Typha latifolia 5
Typha sp.
Sub-Total 27 11 87

Short, prostrate, forb
Alternanthera philoxeroides
Ludwigia grandiflora
Ludwigia peploides
Ludwigia uruguayensis
Lysimachia maritima
Potentilla anserina
Ranunculus repens
Sub-Total 0 0 0

Short, erect, forb
Cotula coronopifolia
Polygonum punctatum
Salicornia europaea
Salsola soda
Symphyotrichum subspicatum
Sub-Total 0 0 0

Tall, erect, forb
Colocasia esculenta
Helenium bigelovii
Lepidium latifolium
Sagittaria lancifolia
Sparganium eurycarpum spp. eurycarpum
Sub-Total 0 0 0

Tall, prostrate, forb
Rumex californicus
Sub-Total 0 0 0

Short, erect, sub-shrub
Salicornia pacifica
Sub-Total 0 0 0

Tall, erect, shrub
Iva frutescens 3
Sub-Total 0 3 0
TOTAL 33 23 87
with the exception of Puget Sound (dominated by short, erect, gra-
minoids) and Louisiana (dominated by tall, erect, forbs). Thirty-
eight samples were classified as forb-dominated. Salicornia pacifica,
classified as a sub-shrubdue to itswoody stems, dominated 46 sam-
ples on theWest Coast. Across regions, the species and genera most
frequently classified as dominant were Distichlis spicata (3 regions),
Phragmites australis australis (3 regions), Spartina spp. (4 regions),
Schoenoplectus spp. (3 regions), and Typha spp. (4 regions) (Table 5).
fied by plant functional type, within each region.

erglades Louisiana Puget Sound SFBay-B/S SFBay-FW

1
1
17
1

1
2

4

1
3 25 0 0

1 14

1
2

9 19
12 19
2 3

6
7
4 17

1 2 8

2 2 21
9 2 52 89

1
1

2
1

1
1

1
3 2 0 3

3
1

2
1

1
1 4 3 0

8
5

2
4

1
12 0 2 6

2
0 0 0 2

5 41
0 5 41 0

0 0 0 0
28 38 98 100
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3.3. NAIP classification

Overall accuracy for the regional NAIP classifications ranged
from 80.5% to 98%. Producer’s accuracy and user’s accuracy for
green vegetation exceeded 90% for Cape Cod, San Francisco Bay,
Chesapeake, and Louisiana (Supplementary Data S3). Resulting
high resolution maps of fraction green vegetation show distinct
trends across regions, for example the Louisiana region, with veg-
etation cover lower in the southeast Terrebonne Parish (Fig. 4).

3.4. Random forest biomass modeling

All national-scale Landsat models contained the same six Land-
sat vegetation indices as independent variables (Table 6). Model
#2, using scaled biomass as the dependent variable and removing
the shrub plots, performed the best, with an RMSE of 310 g/m2 and
a percent normalized RMSE of 10.3% (Fig. 5). Regression of
observed vs. cross-validation predictions did not indicate presence
of model bias. The intercept of the regression was not significantly
different than 0 (p-value = 0.258), and the slope was not signifi-
cantly different than 1 (p-value = 0.493). However model error
was not significantly less than those of the other models, as indi-
cated by two metrics – the confidence intervals around the final
model RMSEs (Table 6) and the confidence intervals around each
mean RMSE generated from the 50 cross-validation training/test
sets (Fig. 6).

For both the full Landsat model and the Landsat model minus I.
frutescens, SAVI had the highest importance score, followed by the
red/green NDVI-type index and WDRVI5 (Table 7). Removing the
shrub samples from the model drops the importance score of ‘‘Che-
sapeake” from 41.4 to 18.7, and all site variables were ranked
lower in importance than all Landsat vegetation indices.

Interpretation of random forest variable dependence plots (pre-
dicted values vs. variables) and associated trend lines can only be
in general terms, as predictions are a function of all variables in
the model (Ehrlinger, 2015). Trend lines in predicted biomass vs.
SAVI follow a quadratic form, and diverge by region and plant
Fig. 4. Fraction green vegetation per 30 m Landsat pixel for Terrebonne and St. Mary P
images.
growth form (graminoid or forb), with forbs being most common
in the Louisiana region (Fig. 7.)

In the combined Landsat/Sentinel-1 VH and VV band model, the
VH backscatter coefficient of variation had the highest importance
value of all radar variables (Table 7). While this variable did not
significantly improve model outcomes, it does show an association
with predicted biomass values (Fig. 8). Given CV = Standard devia-
tion/Mean, Fig. 8 shows positive associations between predicted
biomass and both mean backscatter coefficient and backscatter
standard deviation for each of the three regions, Chesapeake, Ever-
glades, and Louisiana, where both VH and VV band data were avail-
able. Within Chesapeake samples, the highest predicted values are
represented by I. frutescens plots (tall, erect, shrub) and P. australis
(tall, erect, graminoid).

3.5. Regional aboveground carbon density maps

From a compilation of existing %C data for leaf and stem tis-
sues of tidal marsh emergent vegetation across the U.S., the aver-
age %C value was 44.1%, with standard error of ±0.064% (n =
1384; C.I. = 43.99%–44.24%; median = 44.37%). Biomass predic-
tions were generated for our study regions according to model
#2 (Table 6), which excludes I. frutescens shrub plots and is cali-
brated on average biomass within the Landsat pixel (average field
measured biomass * fraction green vegetation in the pixel). After
converting biomass values to carbon densities, maps were gener-
ated for the Blue Carbon extent map (Fig. 9). Maps do not include
scrub-shrub or forested C-CAP wetland classes. Maps reveal
trends in aboveground carbon within and across regions. The
Chesapeake Bay marshes include vegetation with C density > 4
Mg/ha more frequently than other regions. The southeastern
end of Louisiana (Terrebonne Parish) contains C densities below
1 Mg/ha, though higher C (>4 Mg/ha) is present on the prograding
Atchafalaya Delta (St. Mary Parish). In San Francisco Bay, moving
from west to east and further inland from open bay waters, a
gradient of low to high carbon matches the high to low salinity
gradient there.
arishes, Louisiana, as classified in 1 m National Agriculture Imagery Program 2015



Table 6
Random forest model results; Dependent variable is average aboveground green biomass at 30 m.

Datasets Variables #Sites N RMSE ± C.I.
(g/m2)

%
NRMSE

R2

Landsat – full model SAVI, nd_r_g, WDRVI5, nd_g_b, nd_swir2_r,
nd_swir2_nir, site

6 409 327 ± 44 11% 0.59

Landsat minus Iva frutescens plots SAVI, nd_r_g, WDRVI5, nd_g_b, nd_swir2_r,
nd_swir2_nir, site

6 406 310 ± 42 10.3% 0.58

Landsat, minus Iva frutescens plots; dep. var: unscaled avg.
biomass

SAVI, nd_r_g, WDRVI5, nd_g_b, nd_swir2_r,
nd_swir2_nir, site

6 406 329 ± 44 11% 0.56

Landsat, minus Iva frutescens plots, no site variable SAVI, nd_r_g, WDRVI5, nd_g_b, nd_swir2_r,
nd_swir2_nir, site

6 406 330 ± 44 11% 0.52

Landsat plus VV band dataset SAVI, nd_r_g, WDRVI5, nd_g_b, nd_swir2_r,
nd_swir2_nir, sentvvGrCV, site

4 89 369 ± 107 13.4% 0.63

Landsat plus VV band dataset, minus VV band variables SAVI, nd_r_g, WDRVI5, nd_g_b, nd_swir2_r,
nd_swir2_nir, site

4 89 363 ± 107 13.3% 0.63

Landsat plus VV band dataset, minus Landsat variables sentvvGrCV, site 4 89 448 ± 145 16.3% 0.48
Landsat plus VH band dataset SAVI, WDRVI5, nd_g_b, nd_swir2_r, sentvhGrSTD,

site
4 86 408 ± 121 15.3% 0.56

Landsat plus VH band dataset, minus VH band variables SAVI, WDRVI5, nd_g_b, nd_swir2_r, site 4 86 401 ± 120 14% 0.58
Landsat plus VH band dataset, minus Landsat variables SAVI, WDRVI5, nd_g_b, nd_swir2_r, sentvhGrSTD,

site
4 86 479 ± 173 18% 0.36

Landsat plus VV band and VH band dataset SAVI, WDRVI5, nd_g_b, nd_swir2_r, sentvhGrCV,
sentvvGrCV, site

3 56 473 ± 170 17.6% 0.58

Landsat plus VV band and VH band dataset, minus VV band
variable

SAVI, WDRVI5, nd_g_b, nd_swir2_r, sentvhGrCV, site 3 56 474 ± 179 18.1% 0.59

Landsat plus VV band and VH band dataset, minus VH band
variable

SAVI, WDRVI5, nd_g_b, nd_swir2_r, sentvvGrCV, site 3 56 463 ± 174 17.6% 0.60

Landsat plus VV band and VH band dataset, minus VH and
VV band variables

SAVI, WDRVI5, nd_g_b, nd_swir2_r, site 3 56 459 ± 171 17.2% 0.60

Landsat plus VV band and VH band dataset, minus Landsat
variables

sentvhGrCV, sentvvGrCV, site 3 56 537 ± 206 20.4% 0.47

Landsat plus VV band and VH band dataset, minus Iva fru-
tescens plots

SAVI, WDRVI5, nd_g_b, nd_swir2_r, sentvhGrCV,
sentvvGrCV, site

3 53 366 ± 140 22.4% 0.60

Landsat plus VV band and VH band dataset, minus Iva fru-
tescens plots, VV or VH band

SAVI, WDRVI5, nd_g_b, nd_swir2_r 3 53 361 ± 139 21.8% 0.61

VV band: in Chesapeake, Everglades, Louisiana, Puget Sound; VH band: in Cape Cod, Chesapeake, Everglades, Louisiana.
SAVI = soil adjusted vegetation index; WDRVI5 = wide dynamic range vegetation index; nd_r_g = normalized difference green/blue index; nd_swir2_r = normalized difference
swir2/red index; nd_r_g = normalized difference red/green index; nd_swir2_nir = normalized difference swir2/nir index.
sentvvGrSTD = VV band backscatter std.dev in green segment; sentvvGrCV = VV band backscatter coefficient of variation in green segment; sentvhGrCV = VH band
backscatter coefficient of variation in green segment.
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Fig. 5. Cross-validation predictions vs. observed average aboveground green biomass at 30 m for final biomass model (model #2, table 6; n = 406, RMSE = 310 g/m2). Solid
black line = linear fit of actual and predicted values; dotted gray line = 1:1 line.
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Fig. 6. Comparison of four national-scale Landsat models. Dotplot shows average RMSE and confidence intervals from 50 cross-validation test samples. (1) Landsat, minus Iva,
Site = model without I. frutescens samples, site variable; (2) Landsat, minus Iva, FGV = model without I. frutescens samples, and with unscaled biomass; (3) Full Landsat = full
model; (4) Landsat, minus Iva = model without I. frutescens samples, and with biomass scaled by fraction green vegetation.

Table 7
Random forest scaled variable importance scores for each variable for a subset of models in Table 6. Model number is in parentheses.

Landsat-Full Model (#1) Importance Score Landsat – minus I. frutescens (#2) Importance Score Landsat + Sentinel VV, VH bands (#11) Importance Score

SAVI 100.0 SAVI 100.0 nd_swir2_r 100.0
nd_r_g 72.6 nd_r_g 69.4 SAVI 91.3
WDRVI5 67.5 WDRVI5 57.5 WDRVI5 87.3
Chesapeake 41.4 nd_g_b 35.1 sentvhGrCV 51.2
nd_g_b 37.9 nd_swir2_r 34.4 Chesapeake 51.0
nd_swir2_r 36.5 nd_swir2_nir 24.4 nd_g_b 48.0
nd_swir2_nir 23.6 Chesapeake 18.7 Everglades 40.9
Everglades 4.9 Everglades 6.9 sentvvGrCV 39.3
SFBay-FW 4.7 SFBay-FW 5.6 Louisiana 14.7
SFBay-B/S 4.5 SFBay-B/S 3.4
Louisiana 0.8 Louisiana 0.8
Puget Sound 0.0 Puget Sound 0.0
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3.6. Uncertainty in aboveground carbon stocks

Due to the large number of pixels per region, mean above-
ground C standard error was very low. Error in total aboveground
C was mainly influenced by error in estimated map area. The lar-
gest present day carbon pools were found in the Terrebonne and
St. Mary Parishes, LA at 507,761 Mg (S.E. ± 14,822 Mg) (Table 8).
Given the small, fragmented coverage of freshwater tidal wetlands
in the San Francisco Bay region, aboveground biomass carbon pools
totaled 5190 Mg (S.E. ± 231 Mg). Mean carbon densities ranged
from 0.97 Mg/ha (S.E. ± 0.003 Mg/ha) in palustrine emergent Ever-
glades marshes, to 2.67 Mg/ha (S.E. ± 0.004 Mg/ha) in palustrine
emergent Louisiana marshes.

4. Discussion

This study represents the first time that a U.S. national-scale
remote sensing model of tidal marsh aboveground C stocks has
been produced. This modeling effort was made feasible by compil-
ing the first nationwide dataset (n = 2400 samples) of aboveground
live biomass of emergent marsh from six regions representing the
conterminous U.S. Pacific, Atlantic, and Gulf coasts. The random
forest model, driven by six Landsat vegetation indices, had an
RMSE of 310 g/m2, or slightly over 10% normalized RMSE. This
model captured variation in plant community composition, soil
types, and background effects such as plant litter and surface
water, thus greatly reducing the scaling limitations of models cal-
ibrated to specific locations (Lobell et al., 2015). Also this research
represents the first time national data on percent carbon in emer-
gent marsh plant tissue has been synthesized, illustrating a narrow
range for %C in tidal marsh plant tissues (C.I.: 43.99%–44.24%C per
gram dry weight). Combined with spatially explicit biomass esti-
mates, this narrow distribution provides a method to improve esti-
mates for aboveground C stocks in tidal marshes, the coastal
wetland blue carbon ecosystem with the greatest areal coverage
in the conterminous U.S. This modeling and data synthesis effort
will allow for aboveground C stocks in tidal marshes to be included
in the coastal wetland section of the U.S. National Greenhouse Gas
Inventory.

While the random forest model does not provide a spatially
explicit assessment of accuracy, it ultimately accounts for variabil-
ity in remote sensing (e.g. Landsat reflectance and radar backscat-
ter), in situ measurements and spatial and temporal plot co-
location errors. Relatively low model error may be attributed to
overall similarities in tidal marsh plant functional type across
regions (Table 5; erect graminoids represented 36–100% of sam-
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Fig. 7. Cross-validated biomass predictions vs. soil adjusted vegetation index (SAVI) values for final biomass model (model #2, table 6; n = 406, RMSE = 310 g/m2). Samples
classified by a) region and b) plant functional type. Plots indicate different quadratic trend lines between predictions and SAVI for two main plant growth forms, graminoid
(537 * SAVI + 2735 * SAVI2 + 26; R2 = 0.54, n = 368) and forb, which is most common in Louisiana (2082 * SAVI � 1021 * SAVI2 � 134; R2 = 0.69, n = 38).

Chesapeake Everglades Louisiana

Sentinel VH backscatter CV (dB)

Plant type

short, erect, forb

short, erect, graminoid

short, prostrate, forb

tall, erect, forb

tall, erect, graminoid

tall, erect, shrub

Chesapeake Everglades Louisiana

Sentinel VH mean backscatter (dB)

cr
os

s 
− 

va
lid

at
io

n 
pr

ed
ic

tio
ns

 (g
/m

2 )

cr
os

s 
− 

va
lid

at
io

n 
pr

ed
ic

tio
ns

 (g
/m

2 )

cr
os

s 
− 

va
lid

at
io

n 
pr

ed
ic

tio
ns

 (g
/m

2 )

Plant type

short, erect, forb

short, erect, graminoid

short, prostrate, forb

tall, erect, forb

tall, erect, graminoid

tall, erect, shrub

Chesapeake Everglades Louisiana

Sentinel VH backscatter stdev (dB)

Plant type

short, erect, forb

short, erect, graminoid

short, prostrate, forb

tall, erect, forb

tall, erect, graminoid

tall, erect, shrub

Fig. 8. Sentinel-1 VH band (a) backscatter coefficient of variation, (b) mean backscatter coefficient and (c) backscatter standard deviation plotted against cross-validation
biomass predictions for model (#11) (Table 6), by region. Samples are classified by plant functional type.
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ples in each region), but also to the random forest algorithm, which
partitions samples into similar groups via permutation of predictor
variables in the generation of regression tree ensembles. Variation
in leaf and canopy properties across functional types influences
retrieval of reflectance and biomass estimation with remote sens-
ing (Shoko et al., 2016). Although plant functional type was not a
variable in the model, Fig. 7 suggests that the random forest algo-
rithm partitioned samples according to plant type, particularly
growth form, when generating predictions, thereby handling the
variation in retrieval of reflectance across samples. These patterns
reflect commonly understood leaf optical properties, that broadleaf
plants typically exhibit a higher reflectance in the NIR region of the
spectrum, compared to plants characterized by narrow leaf, verti-
cal stems.

The random forest variable importance measurement was
used to select the optimal variables for the biomass models
(Belgiu and Drăgut�, 2016). The full national Landsat model was
developed with six common vegetation indices – the SAVI, the
Red/Green TBVI, the WDRVI5, The SWIR-2/Red TBVI, the Green/
Blue TBVI, and the SWIR2/NIR TBVI. Once the three shrub-
dominated samples were removed from the dataset, site effects
in the model were greatly reduced, and all Landsat vegetation



Fig. 9. Tidal marsh aboveground carbon density maps of six study regions, based on the final biomass model (model #2, table 6) and plant percent carbon content data.
Moving from top, left to right: San Francisco Bay, CA, Cape Cod, MA, Everglades, FL, Nisqually NWR, WA, Chesapeake Bay, MD, Terrebonne and St. Mary Parishes, LA.
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indices had greater predictive power than any site factor vari-
able, demonstrating the applicability of the model across regions.
Of the six indices, SAVI, the Red/Green TBVI and the WDRVI5
have been often used for tidal marsh biomass mapping (Byrd
et al., 2016; Langley and Megonigal, 2012; Mishra et al., 2012).
The SWIR2/NIR TBVI is the inverse of the Normalized Difference



Table 8
Total and average present day tidal marsh aboveground carbon and uncertainties, by region and wetland type.

Region Admin Area C-CAP Class Mapped
Area (ha)

Estimated
Area (ha)

+/� s.e. Mean C
(Mg/ha)

+/� s.e. Total C
(Mg)

+/� s.e.

Louisiana Terrebonne and St. Mary
Parishes, LA

Estuarine Emergent 108,787 106,453 4074 1.85 0.003 196,939 7551

Palustrine Emergent 101,388 116,413 5170 2.67 0.004 310,822 13,834
Total 210,174 222,866 6582 2.25 0.003 507,761 14,822

Puget Sound Nisqually National
Wildlife Refuge, WA

Estuarine Emergent 611 598 23 1.67 0.015 998 38

Palustrine Emergent 10 11 1 2.14 0.133 25 1
Total 621 609 23 1.67 0.015 1023 39

Everglades Everglades National Park Estuarine Emergent 38,877 38,043 1456 1.24 0.002 47,173 1806
Palustrine Emergent 2729 3133 139 0.97 0.003 3039 136
Total 41,607 41,176 1462 1.22 0.002 50,213 1789

Cape Cod Barnstable County, Cape
Cod, MA

Estuarine Emergent 7831 7663 293 2.01 0.005 15,403 589

Palustrine Emergent 351 403 18 2.44 0.020 983 44
Total 8182 8066 294 2.02 0.005 16,386 595

Chesapeake Anne Arundel County, MD Estuarine Emergent 1202 1176 45 1.89 0.011 2223 85
Palustrine Emergent 202 232 10 2.07 0.025 480 21
Total 1404 1408 46 1.92 0.010 2703 91

SFBay-Brackish/
Saline

Bay wetlands in Marin,
Sonoma,
Napa, Solano, Contra Costa
Counties, CA

Estuarine Emergent 16,158 15,811 605 2.03 0.004 32,097 1229

SFBay-
Freshwater

Sacramento, San Joaquin
Counties, CA

Palustrine Emergent 2122 2436 108 2.13 0.009 5190 231

Total 18,280 18,248 615 2.04 0.004 37,287 1256
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Infrared Index (Hardisky, 1983). The SWIR2/Red TBVI was highly
correlated (r = 0.98) with the SWIR1/Green TBVI, the inverse of
the NDWI (McFeeters, 1996), although it produced better results
based on RMSE than the SWIR1/Green TBVI, and so was selected
for the final model.

By scaling the field measured average biomass by fractional
cover of green vegetation in the pixel, we achieved a more repre-
sentative estimate of average biomass across the 30 m pixel foot-
print, which aided model prediction. Using this scaled value as
the dependent variable generated lower model error than using
unscaled average biomass (RMSE 310 g/m2 vs 329 g/m2, %NRMSE
10.3% vs. 11%). The object-based classification approach applied
here can be costly due to software needs and processing time.
However open source programs, such as the python-based RSGI-
SLib (Bunting et al., 2014) can provide a low cost alternative for
image processing and classification of green biomass.

The inclusion of Sentinel-1 backscatter within the model was
unable to improve the results. Observed increase in RMSE suggests
that backscatter was not a reliable predictor of biomass. The inabil-
ity of the C-band radar to discriminate between varying biomass,
despite differences in plant structure suggests the saturation of
the received backscatter for the marsh vegetation types. Co-
polarization backscatter is increased from vertical structures while
cross-polarization is a consequence of volume scattering, often by
a canopy structure. Our findings are supported by the result that
neither polarization (VV, VH) was a better predictor of biomass
than the other, neither within nor between sites, demonstrating
the insensitivity of the radar to vegetation structure within the
model. This has previously been observed in Louisiana marshes
(Ramsey et al., 2013) where local incidence angle was concluded
to have a more noticeable effect on backscatter from marshes than
polarization. In order to differentiate between marsh types, larger
wavelength radar such as L-band radar would be required that is
sensitive to the larger components and subsequent biomass of
the vegetation. As backscatter of L-band saturates at larger values
of biomass, this would be able to discriminate between vegetation
over a greater range of biomass than C-band. Currently, however,
no L-band data is consistently available for use within a monitoring
system.

The greatest outlier in the VV-VH model (model #11, Table 6)
was a sample composed of sawgrass in the Everglades. The
recorded biomass value was 92.6 g/m2 yet the predicted biomass
was 962 g/m2 in the VV-VH model (#11, Table 6, Fig. 8). The cause
of this was the proximity of the sample site to red mangrove with
heights of approximately 250 cm (T. Troxler, personal communica-
tion, 05/15/17), which serves as the dominant scatterer detected
by the radar. The much larger components and canopy structure
of the mangrove in comparison to the marsh vegetation led to a
large increase in predicted biomass, as a consequence of increased
backscatter. This is synonymous with mixed pixels that are present
in optical imagery.

Time and effort in development of the remote sensing dataset
used in this study was greatly reduced by taking advantage of
the parallel processing and data archive available with Google
Earth Engine. The GEE platform allowed for fast access to the mas-
sive archive of satellite images, and once the custom code was
developed and tested, it allowed for fast, repeatable, automated
extraction of and computations on pixel values from such images.
Although GEE also contains collections of Sentinel-1 (though
incomplete as of May 2017) and NAIP, we primarily used GEE’s
Landsat imagery collections, which GEE kept current on a more
regular basis, to build the Biomass/Remote Sensing dataset (Byrd
et al., 2017). Despite the advantages of GEE for building large data-
sets however, in this study it was determined that some post-
processing steps were best performed outside the GEE environ-
ment (Supplementary Data S1). The reasons for this included: a.
GEE’s erratic response time and occasional random server-side fail-
ures; and b. processing the dataset locally with relational database
management software provides for more flexibility to experiment
with many different filtering criteria without suffering the
frustrations of slow and/or erratic server response. Judiciously
using a combination of local desktop software and GEE’s massively
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distributed, parallel platform exploits the strengths and avoids the
drawbacks of each.

Overall mean carbon densities for tidal marshes across CONUS
regions ranged from 1.67 Mg C/ha in the Everglades to 2.25 Mg
C/ha in Louisiana. Everglades C density and biomass were on aver-
age lower than other regions, likely due to the phosphorus defi-
ciency there that leads to lower productivity of the sawgrass
(Childers, 2006). The high carbon density of Louisiana marshes is
likely driven by the prevalence of high biomass palustrine emer-
gent marshes, with C density of 2.67 Mg C/ha. Louisiana palustrine
marshes had the highest biomass of all regions, while San Francisco
Bay brackish/saline marshes had the highest biomass of all estuar-
ine emergent marshes. This distinction might be due to the inclu-
sion of large areas of brackish marsh, which tend to have higher
plant biomass than fully saline tidal marshes (Schile et al., 2011).

Through the use of the multivariate delta method for error
propagation and inclusion of quantified errors in C-CAP tidal marsh
mapped area, we provide an uncertainty analysis method suitable
for Tier 2/3 carbon stock assessments. For estuarine emergent
marshes we found that broadly across CONUS, estuarine emergent
marshes were slightly overrepresented by C-CAP’s mapping algo-
rithms and palustrine emergent marshes were slightly underrepre-
sented. Uncertainties in estimated area are related to the
proportional areas of commission and omission errors, as well as
the mapped area of the classes and number of observations in
the validation framework (Olofsson et al., 2014). One unit of
mapped estuarine emergent wetland area corresponds to 0.98 ±
0.037 units of estimated area. And one unit of mapped palustrine
emergent wetland area corresponds to 1.15 ± 0.051 units of esti-
mated area.

5. Conclusion

In this study we developed a U.S. national-scale remote sensing
model of tidal marsh aboveground C stocks based on freely avail-
able satellite and airborne imagery and developed with field sam-
ples of aboveground biomass and plant %C. In our jurisdictional
study regions, estimated C stocks ranged from approximately
1000 Mg in the Nisqually NWR in Washington to over 500,000
Mg in the Terrebonne and St. Mary Parishes in Louisiana. Uncer-
tainties in C stock estimates were calculated through propagation
of error in biomass, %C, and C-CAP tidal marsh map area. Remote
sensing models such as described here will be used to develop
national GHG inventories and aid implementation of projects
approved in the voluntary carbon markets. Given global coverage
of Landsat, this approach can likely be expanded internationally
as well. Although high resolution imagery such as NAIP is not avail-
able globally, Landsat-only models will likely provide suitable
results, particularly in fully vegetated areas. Newly available global
base maps of salt marshes (Mcowen et al., 2017) will also aid glo-
bal implementation. While archived Landsat imagery can be used
for historical estimates of aboveground C flux, moving forward,
with the development of a 2015 C-CAP landcover map and contin-
uation of Landsat satellites, future spatially explicit trends can be
calculated as well.

Acknowledgements

This research would not be possible without multiple data pro-
viders. For San Francisco Bay biomass data, we thank Lisa Schile,
Smithsonian Institution, V. Thomas Parker, San Francisco State
University, John Callaway, University of San Francisco, Michael
Vasey, San Francisco Bay National Estuarine Research Reserve,
and Ellen Herbert, Virginia Institute of Marine Science. San Fran-
cisco Bay biomass data from 2005 to 2008 were provided through
the CALFED Science Program [grant number 4600002970], as part
of the Integrated Regional Wetland Monitoring (IRWM) pilot pro-
ject, California Bay-Delta Authority Science [grant number 1037],
and the National Institute of Climate Change Research (Depart-
ment of Energy, Coastal Center). For Puget Sound biomass data,
we thank Melanie Davis, Isa Woo and Susan De La Cruz, USGSWes-
tern Ecological Research Center. For Cape Cod biomass data, we
thank Kevin Kroeger, Meagan Gonneea, and Jennifer O’Keefe Sut-
tles, USGS Woods Hole Science Center. For Chesapeake biomass
data and plant carbon data, we thank Patrick Megonigal, Meng
Lu, and Liza McFarland, Hope Brooks, Bert Drake, Gary Peresta
and Andrew Peresta, of the Smithsonian Institution. Additional tis-
sue carbon data were provided by Chris Janousek, Oregon State
University. For the Chesapeake data we also acknowledge the
National Science Foundation Long-Term Research in Environmen-
tal Biology Program [grant numbers DEB-0950080, DEB-1457100,
and DEB-1557009], the Department of Energy Terrestrial Ecosys-
tem Science Program [grant numbers DE-FG02-97ER62458, DE-
SC0008339] and the Smithsonian Institution. For Everglades bio-
mass data we thank Tiffany Troxler, Florida International Univer-
sity. Everglades biomass data are based upon work supported by
the National Science Foundation through the Florida Coastal Ever-
glades Long-Term Ecological Research program [grant number
DEB-9910514 (for work from 2000-2006); grant number DBI-
0620409 (for work from 2007-2012); and grant number DEB-
1237517 (for work from Dec. 2012-2018)]. For Louisiana biomass
data, we thank Edward Castañeda, Florida International University.
We thank Julie Yee, USGS Western Ecological Research Center, for
statistical consultation. Additional San Francisco Bay biomass data
(2011 – 2014) were available through a NASA New Investigator
Program in Earth Sciences award [grant number NNH10A086I]
and a NASA Applied Sciences Program Ecological Forecasting
award [grant number NNH14AX16I] to K. Byrd. This research was
funded by the NASA Carbon Monitoring System Program [grant
number NNH14AY67I], the USGS LandCarbon Program, and the
USGS Land Change Science Program. Part of this work was per-
formed at the Jet Propulsion Laboratory, California Institute of
Technology. Any use of trade, firm, or product names is for descrip-
tive purposes only and does not imply endorsement by the U.S.
Government.

References

American Carbon Registry, 2017. Approved Methodology for Restoration of
California Deltaic and Coastal Wetlands. <http://americancarbonregistry.
org/carbon-accounting/standards-methodologies/restoration-of-california-deltaic-
and-coastal-wetlands/california-wetland-restoration-methodology-final-2017.
pdf>.

Barbour, Burk, Pitts, Gilliam, Schwartz, 1999. Terrestrial Plant Ecology. Addison
Wesley Longman, Menlo Park, CA.
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